
Supplementary materials

S1 Comparison with other fragmentation methods

FraGVAE and N-Gram Graph are existing fragment-based molecular property prediction models. Although
these methods also breaks molecular graphs into fragments, these fragments are invalid in chemistry. Fig. S1
shows an example of breaking an molecule into fragments by FraGVAE and N-Gram Graph methods. It is
obvious that the existing two fragment definitions will break an atomic group into small fragments that no
longer represent a valid atomic group. Specifically, it will break the aromatic rings. And these small fragments
cannot represent larger atomic groups or pharmacophores.

While our fragment definition is based on the common structure of atomic groups. It uses acyclic single
bonds as breakable bonds, which can be considered as boundaries of atomic groups. As is shown in Fig. 1, the
fragments generated by our method will always be valid in chemistry. And an atomic group will be preserved
at least in one of the fragments. So, it makes it possible for the model to learn the latent relationship between
functional groups and molecular properties.
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Figure S1: The fragments of aspirin extracted by (a) FraGVAE and (b) N-Gram Graph. Here for N-Gram
Graph, n is set to be 3. Not all 3-gram fragments are listed.
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S2 Statistical information of datasets

Table S1 shows the statistical information of datasets that we used in this work. In this table, n denotes the
number of molecules in the dataset, Nmean denotes the average number of atoms, Nmean

b denotes the average
number of breakable bonds, and Nmax

b denotes the maximum number of breakable bonds. Table S2 shows
the distribution of positive/negative samples in datasets with classification tasks. In this table, npos and nneg
denotes the number of positive/negative samples, respectively.

Table S1: Statistical information of benchmark datasets.
Category Datasets Tasks n Nmean Nmean

b Nmax
b

Physio-chemical property ESOL 1 1128 13.29 5.17 25

FreeSolv 1 642 8.72 4.11 16

QM9 12 133247 8.80 2.76 8

Lipop 1 4200 27.04 8.80 51

CEP 1 29978 27.66 1.41 4

Bioactivity HIV 1 41127 25.51 8.71 161

BACE 1 1513 34.09 13.74 62

SHP2 1 865 29.41 8.14 19

MUV 17 93087 24.23 7.69 23

Malaria 1 9999 30.36 10.33 87

Physiology and Toxicity BBBP 1 2050 24.06 8.29 52

Tox21 12 7831 18.57 8.11 73

SIDER 27 1427 33.64 15.21 365

ClinTox 2 1484 26.16 10.67 87

ToxCast 617 8597 18.78 8.09 76
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Table S2: Distribution of pos/neg samples of datasets with classification tasks.

Dataset Task Total number npos npos/nneg

Tox21 NR-AR 7265 309 0.044

NR-AR-LBD 6758 237 0.036

NR-AhR 6549 768 0.133

NR-Aromatase 5821 300 0.054

NR-ER 6193 793 0.147

NR-ER-LBD 6955 350 0.053

NR-PPAR-gamma 6450 186 0.030

SR-ARE 5832 942 0.193

SR-ATAD5 7072 264 0.039

SR-HSE 6467 372 0.061

SR-MMP 5810 918 0.188

SR-p53 6774 423 0.067

ClinTox FDA APPROVED 1484 1390 14.787

CT TOX 1484 112 0.082

SIDER SIDER1 1427 743 1.086

SIDER2 1427 996 2.311

SIDER3 1427 22 0.016

SIDER4 1427 876 1.590

SIDER5 1427 1151 4.170

SIDER6 1427 997 2.319

SIDER7 1427 1298 10.062

SIDER8 1427 251 0.213

SIDER9 1427 1024 2.541

SIDER10 1427 727 1.039

SIDER11 1427 376 0.358

SIDER12 1427 1292 9.570

SIDER13 1427 323 0.293

SIDER14 1427 213 0.175

SIDER15 1427 1108 3.473

SIDER16 1427 885 1.633

SIDER17 1427 1318 12.092

SIDER18 1427 253 0.216

SIDER19 1427 1006 2.390

SIDER20 1427 1060 2.888

SIDER21 1427 1016 2.472

SIDER22 1427 911 1.766

SIDER23 1427 125 0.960

SIDER24 1427 659 0.858

SIDER25 1427 988 2.251

SIDER26 1427 1304 10.602

SIDER27 1427 946 1.967

HIV HIV 41127 1443 0.036

BACE BACE 1513 691 0.841

BBBP BBBP 2050 1567 3.244
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S3 Information and the patents of SHP2 dataset.

The patents that we used to construct the SHP2 dataset is listed in Table S3. Among the molecules proposed
in these patents, only the molecules of which IC50 values are not larger than 10 µM are considered to have
good binding affinities and selected to build the SHP2 dataset.

Table S3: Information of the SHP2 dataset and the patents.

Patent Number selected number of molecules

WO2015107493 29

WO2015107494 50

WO2015107495 88

WO2016203404 83

WO2016203405 193

WO2016203406 120

WO2017211303 5

WO2017216706 66

WO2018013597 4

WO2018057884 41

WO2018081091 107

WO2018136265 5

WO2018172984 21

WO2019067843 25

WO2019075265 28

Total 865
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S4 Results of the experiments on QM9 dataset.

Table S4 shows the performance of models on different tasks of QM9 benchmark. The top-2 models are bolded.
Comparing the results of FraGAT and Attentive FP, it can be figured out that the FraGAT model can achieve
better performance on 8 of 12 tasks. The experiments on QM9 dataset in N-Gram Graph are not conducted
in multi-task learning way, but training models seperately for each task. So that the performances of the
N-Gram Graph model is relatively better on some tasks. However, the FraGAT model can still achieve better
performance on 7 of 12 tasks. Values of Attentive FP and baselines are cited from (Xiong et al., 2019)

Table S4: The performance on different tasks of QM9 benchmark.

Task DTNN GC MPNN Attentive FP N-Gram XGB FraGAT

mu 0.244 0.583 0.358 0.451 0.535 0.479

alpha 0.95 1.37 0.89 0.492 0.612 0.446

homo 0.00388 0.00716 0.00541 0.00358 0.005 0.00356

lumo 0.00513 0.00921 0.00623 0.00415 0.005 0.00435

gap 0.0066 0.0112 0.0082 0.00528 0.007 0.00538

r2 17 35.9 28.5 26.839 59.137 28.576

zpve 0.00172 0.00299 0.00216 0.00120 0.000 0.00107

u0 2.43 3.41 2.05 0.898 0.427 0.658

u298 2.43 3.41 2 0.893 0.428 0.658

h298 2.43 3.41 2.02 0.893 0.428 0.658

g298 2.43 3.41 2.02 0.893 0.428 0.658

Cv 0.27 0.65 0.42 0.252 0.334 0.216
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S5 Influence of our data-augmentation method to the performance

During the evaluation step, the data-augmentation method is used for dealing with the additional random-
ness. To quantitively measure this randomness and the influence of our data-augmentation method to the
performance of the model, we conduct a supplementary experiment. In this experiment, we test well-trained
models on four datasets: ESOL, SHP2, ClinTox, SIDER. A fixed test set is used for evaluation. During the
evaluation step, we no longer input all of the Nb samples, but input α ∗Nb samples, where α is a parameter
to adjust the batch size of the augmented samples. Here 5 values of α are selected. And for each value, the
evaluation is repeated for 50 times on the fixed test set.

The result of this experiment is shown in Fig. S2 and Table S5. The statistical information of Nb of the
test sets of these four datasets is shown in Table S6. From Fig.S2 and Table S5, we can see that as the increase
of α, the performance fluctuation decreases, which means the model is more stable. This indicates that by
using the data-augmentation strategy, the performance uncertainty can be restrained. The slightly improved
average index indicates that there might be some samples that the model cannot predict accurately. While
using data-augmentation strategy, the influence of these difficult samples will be reduced. So that the average
performance of the model can achieve a better level.

a b

c d

Figure S2: The result of the randomness experiments.
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Table S5: The detailed result of the randomness experiments.

Dataset α Pmean Pvariance

ESOL 0.1 0.4780 0.0090

0.3 0.4697 0.0061

0.5 0.4674 0.0049

0.7 0.4647 0.0018

0.9 0.4647 0.0003

SHP2 0.1 0.6369 0.0203

0.3 0.6101 0.0146

0.5 0.6063 0.0139

0.7 0.6008 0.0064

0.9 0.6009 0.0011

ClinTox 0.1 0.9756 0.0081

0.3 0.9810 0.0049

0.5 0.9814 0.0031

0.7 0.9825 0.0023

0.9 0.9834 0.0009

SIDER 0.1 0.6748 0.0047

0.3 0.6789 0.0029

0.5 0.6796 0.0028

0.7 0.6806 0.0012

0.9 0.6805 0.0004

Table S6: Distribution of Nb of the test sets.

Dataset Nmean
b Nmax

b

ESOL 5.36 20

SHP2 8.48 14

ClinTox 10.53 52

SIDER 11.39 70
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S6 Number of learnable parameters of ablation models

The number of learnable parameters of M12 and FraGAT models are listed in Table S7. Those models that
can achieve the best performance on each dataset are selected.

In fact, the numbers of learnable parameters of M12 and FraGAT are largely influenced by the length of
the latent vector, F, and the structure of the classifier. These hyperparameters are determined automatically
and they may be different in M12 and FraGAT. And the complexity of FraGAT is not always larger than that
of M12. For example, for the M12 model trained on ESOL dataset, F=32 and the numbers of cells of each
layer of the classifier are [32*3, 1]. While for the FraGAT model on ESOL, F=150 and the numbers of cells
are [150*4, 512, 1]. So the total number of parameters of FraGAT on ESOL is about 55 times of that of M12.
However, the situation is different on BBBP dataset. For M12, F=200 and the numbers of cells for each layer
are [200*3, 128, 32, 2]. While for FraGAT, F=32 and the numbers are [32*4, 512, 2]. In this case, the total
number of parameters of the M12 is almost 10 times of that of the FraGAT model.

Except for those special cases, compared with M12, FraGAT generally has more learnable parameters. As
is shown in Table S7, the total number of parameters of M12 is about 0.6 to 0.8 times of that of the FraGAT
model.

Table S7: The number of learnable parameters.

benchmark M12 FraGAT M12 / FraGAT

ESOL 30954 1729046 0.018

FreeSolv 1400705 1777656 0.788

HIV 504715 871569 0.579

BACE 1400738 2435003 0.575

BBBP 1181131 121041 9.758

Tox21 33185 57063 0.582

SIDER 36095 60933 0.592

ClinTox 31245 54483 0.573
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S7 Influence of parameters of graph model to the performance

In this part, the influence of the parameters of graph model to the performance of FraGAT is tested. In our
experiments, four datasets, ClinTox, BACE, ESOL and FreeSolv, are used. For each dataset, three parameters
of the graph model, layers of Attentive FP for atom embeddings (denoted as k), layers of Attentive FP for
molecule embeddings (denoted as T ), and the length of the latent vector (denoted as F ), are changed during
the experiments. And the other parameters are set to be the same as those used in the benchmark experiments
and remain unchanged. The model is trained and evaluated for 5 times for each parameter combination, and
the mean of the metrics on the test set is reported. The results are shown in Fig. S3.

From Fig. S3, although we can see that the model will achieve an optimal performance on some specific
parameter combination, the relationship of these parameters to the performance of the model is not obvious
from these results. It is known that the number of layers of the graph model determines the distance that the
information propagates in the graph. Thus, there must be some association among the radius of the graph,
the number of the layers and the performance of the model. However, in our experiments, the radius of the
molecular graphs and the fragments are diverse. So that the most appropriate number of layers for each graph
might be different. Thus, it is not easy to find the concrete relationship between the parameter of the graph
model and prediction performance. We intend to leave this issue for a future work.

a b

c d

Figure S3: Influence of parameters of graph model to the performance. (a) ESOL (b) FreeSolv (c) BACE (d)
ClinTox.
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S8 Detailed results of case studies

Table S8 shows the detailed result of the interpretability experiment. The upper, middle and lower part of the
table are the response of the model toward different samples of molecule a, b and c, respectively.

Table S8: Responses of the model toward different samples of three molecules.

bond number yi l absolute error error ranking

0 0.159 0.064 0.095 5

1 0.040 0.064 0.025 4

2 0.056 0.064 0.009 2

3 0.043 0.064 0.021 3

4 0.302 0.064 0.238 6

5 0.058 0.064 0.006 1

0 0.409 0.024 0.385 11

1 0.039 0.024 0.015 1

2 -0.128 0.024 0.152 9

3 -0.039 0.024 0.063 3

4 -0.065 0.024 0.089 4

5 -0.065 0.024 0.089 4

6 -0.065 0.024 0.089 4

7 -0.079 0.024 0.103 7

8 0.330 0.024 0.306 10

9 -0.026 0.024 0.050 2

10 -0.080 0.024 0.104 8

0 0.163 0.003 0.160 8

1 0.006 0.003 0.003 1

2 0.150 0.003 0.147 7

3 0.043 0.003 0.040 5

4 -0.050 0.003 0.053 6

5 -0.009 0.003 0.012 2

6 -0.011 0.003 0.014 3

7 -0.011 0.003 0.014 4
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S9 SHP099

SHP099 (Fortanet et al., 2016) is a template molecule for studying drugs of target SHP2 in recent years.
Researchers study to find molecules with better binding affinity by modify the structure of SHP099. The
binding affinity of SHP099 is 0.07 µM , and its structure, which is shown in Fig. S4, consists of 3 parts: aryl,
central ring and heterocycle.

According to the X-ray cocrystal analysis in (Fortanet et al., 2016), the binding affinity is mainly contributed
by two interactions: the PHE-113 interaction with the amino-group on the heterocycle and cationic-π stacking
interaction between the aryl, central ring and ARG-111. In (Fortanet et al., 2016), it is shown that the
amino-group on the heterocycle will form ionic bonds with the SHP2 protein. And the bond energy of the
ionic bond is so larger that this amino-group contributes major binding affinity to the molecule. For the
interaction between SHP099 and ARG-111, it is revealed by (Fortanet et al., 2016) that the ortho-chlorine on
the Aryl effectively fill a hydrophobic pocket on the SHP2 protein, which is benifitial to binding. Besides, the
amino-group on the central ring also form a hydrogen bond with GLU-250.
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Figure S4: The structure of molecule SHP099.
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S10 Molecular Docking Result

Fig. S5 shows the molecular docking result of molecule c in Sec. 3.3. Just like the discussion of SHP099 in
Sec. S9, similar interactions are revealed in this figure, including the interaction between aryl, central ring and
ARG-111, the interaction between amino-group on spirocycle and PHE-113 and the H-bond between amino-
group on the central ring and GLU-250. Besides, the hydroxy on the spirocycle can form an extra hydrogen
bond with GLU-249, which further increase the binding affinity.

Figure S5: The docking result of molecule c.
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